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Nonlinear-wave effects on fixed and floating bodies 
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A numerical method for calculating the interaction of steep (nonlinear) ocean waves 
with large fixed or floating structures of arbitrary shape is described. The interaction 
is treated as a transient problem with known initial conditions corresponding to still 
water in the vicinity of the structure and a prescribed incident waveform approaching 
it. The development of the flow, together with the associated fluid forces and structural 
motions, are obtained by a time-stepping procedure in which the flow at  each time step 
is calculated by an integral-equation method based on Green’s theorem. A few results 
are presented for two reference situations and these serve to illustrate the effects of 
nonlinearities in the incident waves. 

1. Introduction 
Wave-force predictions for large fixed or floating offshore structures are generally 

made on the basis of linear diffraction theory, which is formally valid for small- 
amplitude sinusoidal waves (for a review of the methods used see Sarpkaya & Isaacson 
1981). I n  order to account more realistically for the effect of large wave heights, 
research has recently been directed primarily towards developing a second approxi- 
mation based on the Stokes expansion procedure. However, such an approach is of 
practical value only under somewhat restricted conditions, as in the case of an un- 
disturbed wavetrain described by Stokes’ second-order theory. On the other hand, 
considerable progress has now also been made on the accurate calculation of two- 
dimensional (vertical-plane) flows describing the deformation of steep or breaking 
waves (Longuet-Higgins & Cokelet 1976; Srokosz 1981), even when a fixed obstacle is 
present in the flow (Vinje & Brevig 1981). The methods used rely on the assumption 
that the corresponding flows are two-dimensional, and cannot be directly extended to 
three-dimensional problems. 

Using a different approach from the two above, an attempt is made in the present 
paper to provide a numerical solution to the complete boundary-value problem in 
three dimensions and without applying any wave-height perturbation procedure. The 
method described here is applicable to the general case of a body of arbitrary shape 
which may also undergo free or restrained motions. I n  the approach adopted, the wave 
diffraction is treated as a transient problem with known initial conditions corres- 
ponding to still water in the vicinity of the structure and a prescribed incident wave- 
form approaching the structure. The development of the flow can then be obtained 
by a time-stepping procedure, in which the velocity potential of the flow a t  any one 
instant is obtained by an integral-equation method based on Green’s theorem. 
Simplifications to the method corresponding to the two-dimensional vertical-plane 
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problem, or to the cases of a structure which is fixed or undergoing forced motions are 
also described. A preliminary formulation of the method, which dealt with the fixed- 
body case only, has been described in detail in an unpublished report (Isaacson 1951 a) ,  
and subsequently summarized (Isaacson 1981 b ) .  

2. Theoretical formulation 
Since the body motions are not linearized in the usual way, it is convenient to 

employ two co-ordinate systems as indicat6d in figure 1. Oxyz forms a right-handed 
Cartesian co-ordinate system fixed in space, with x measured in the direction of 
incident wave propagation and z measured upwards from the still-water level. G is the 
centre of mass of the body and Gx’y‘z‘ forms a right-handed Cartesian co-ordinate 
system fixed to the body such that the axes coincide with the body’s principal axes of 
inertia. In most cases, we may take 2’ to  form the longitudinal axis, y’ the transverse 
axis, and the z’ axis is initially directed upwards. 

At any instant the location of the body is completely specified by the co-ordinates 
cl, c,, . .., c6, where (&, c2, c3) denote the co-ordinates of G inthe Oxyz system and so 
describe the translation of the body; and (c4, c5, c6) denote the angles of roll, pitch and 
yaw measured clockwise when facing the positive x’, y‘ and z’ directions in turn 
(for their formal definitions see Landweber 1961). 

In  the following development (based on Landweber 1961) it is more convenient to 
express the body motions in terms of ul, u2, .. . , u6, where ul, u2 and u3 are the coni- 
ponents of the absolute velocity of G in the x’, y’ and z’ directions respectively; and 
u4, u5 and u6 are the angular-velocity components of the body about the x’, y’ and z’ 
axes respectively. ck and uk are related as follows: 

(2.1) 

(2.2) 

i $-&js5 = u4, 

&3s4c5 + c s c 4  = u5, 

c6c4c5- t5s4  = 

I = u1 c5 cf3 + u2(s4 sf, s6 - c4 s6) f u3(c4 s5 c6 + s4s6), 

‘5’6 - ‘4‘6), t z  = u1c5sf3 + u2(s4s5s6 + c4 ‘6) + 
c3 = - u , s , + u , s 4 c , + u , c 4 c , ;  
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where dots denote differentiation with respect to time, and ck and 8k denote cosck 
and sin <k respectively. 

The boundary-value problem defining the fluid motion may be set up as follows. 
Let t denote time and y the free-surface elevation above the still-water level. The 
sea bed is assumed horizontal along the plane z = -d. The fluid is assumed incom- 
pressible and inviscid, and the flow irrotational. The fluid motion can therefore be 
described by a velocity potential $, which satisfies the Laplace equation within the 
fluid region, 

and is subject to the following boundary conditions: 

(2.3) Q2$ = 0, 

_ -  ' 4 - 0  a t  z = - d ,  
ax 

4 + g y  + +(O$)2 = o on Sf. (2.7) 

Here g is the acceleration due to gravity, n denotes distance in the direction of the 
unit normal vector n directed outward from the fluid region, V, is the velocity of the 
body surface in the direction n, S b  is the immersed body surface, Sf is the free surface 
( z  = y), and n, is the direction cosine of n with respect to the z-direction. Equations 
(2.4) and (2.5) correspond to the kinematic boundary conditions on the sea bed and 
body surface respectively, while (2.6) and (2.7) correspond to the kinematic and 
dynamic free-surface boundary conditions respectively. (The form of (2.6) adopt'ed 
here is accounted for in Isaacson 1981 a.) 

V, a t  the point x = (x', y', 2') on the body surface may be expressed in terms of 

uk by 

where n, = nz., n2 = nu,, n3 = na,, 

n4 = nz, y' -nu, z', 

n5 = nz. 2' - ndf XI, 

n6 = nut x' - n ,  y', 

and n,, nu,, nz, are the direction cosines of n a t  x in the x', y', and z' directions res- 
pectively. 

A boundary-integral method involving a Green function is used as the basis for a 
numerical evaluation of $. Since $ is a harmonic function, the second form of Green's 
theorem may be applied over a closed surface S containing a fluid region, to relate 
boundary values of the potential # and its normal derivative a$/an (see e.g. Kellogg 
1929; Morse & Feshbach 1953). The potential $(x) a t  the point x for the case where x 
lies on the boundary itself (approached from within the region contained by S) is 

(2.10) 
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FIGURE 2. Sketch of integration surfaces (shown with q = 0). 

Here { represents a point ( f ; ,  7, 5 )  on the surface S over which the integration is per- 
formed, G is a suitable Green function and n is measured from the point 5. (In (2.10) 
the surface S is assumed smooth at x. Otherwise (2.10) may be modified by replacing 
t.he factor 1/27r by 1/p, where p is the solid angle or the fluid side of x that  S makes a t  
x.) In  the present context the surface S would comprise the immersed body surface 
S b ,  the instantaneous free surface Sf, a vertical control surface S, surrounding the body 
and the sea bed, as indicated in figure 2. However, the assumption of a horizontal 
sea bed is generally quite reasonable, and it is more efficient to exclude the sea bed 
from S and to choose a Green function that accounts for the symmetry about the 
sea bed. This is 

where r is t,he distance between the points x and 5, 
Q = l/r + I/#, (2.11) 

(2.12) 

and r’ is the distance between x and the point 5’ = ( c , ~ ,  - ((+ 2d)), which is the 
reflection of in the sea bed, 

r’ = Ix-{‘l = [ ( ~ - f ; ) ~ + ( y - 7 ) ~ + ( 2 + 5 + . 2 d ) ~ ] * .  (2.13) 

Initial conditions are chosen to correspond to still water in the vicinity of the 
structure and a known incident waveform approaching it. Any scattered waves sub- 
sequently generated by the interaction with the structure travel only a short distance 
over the duration that is analysed. Thus, provided that the control surface is chosen 
to lie sufficiently far from the body, the scattered waves will not reach it in this time. 
Consequently, the values of $ and a$/& on this surface correspond to those of the 
incident wave field, denoted by the superscript (w), which are known a t  all times from 
any chosen wave theory. That is 

(2.14) 

The location of the control surface that meets the above requirements can be 
estimated in terms of the time interval to be analysed and the speed of scattered-wave- 
energy propagation, which can be approximated by the group velocity calculated by 
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linear wave theory. It follows that the surface Sf should extend to about one or two 
wavelengths from the body surface, and so is not unduly large. 

By applying (2.14) to (2.10) the surface integral is conveniently separated into an 
integral over S, that is known at  any time, and an integral over S b  +Sf that contains 
the boundary functions 4 and a$/& to be determined. That is 

(2.15) 

This integral equation over the surface S b  + Sf is subject to boundary conditions on 
these two surfaces Xb and Sf. 

The free-surface boundary conditions are treated by an explicit time-stepping 
procedure in which the free surface Sp( t+a t )  and the velocity potential q5t+at both at  
time t+At are expressed explicitly in terms of the solution up to time t .  Various 
time-differencing schemes may be used, and a relatively simple one has been adopted 
here in which the free-surface boundary conditions (2.6) and (2.7) are expressed in 
the form 

(2.16) 

(2.17) 

The subscripts denote the times at  which the corresponding quantities are considered, 
and each quantity is located on the surface Sf at the corresponding subscripted 
instant. (One advantage of the formula used above is that the solution's variation 
with time does not exhibit noticeable oscillatory behaviour. More accurate formulae 
in At may readily be adopted if required.) In applying (2.16) and (2.17), the right-hand 
sides contain quantities at  times t and t -At, which are known from previous iterations, 
so that the boundary condition is established in the form 

A+at = f(t9 t - At) on Xf(t+*t), (2.18) 

The boundary condition on the immersed body surface is given from (2.5) and (2.8) 
wheref( ) is a known quantity. 

as 
(2.19) 

The six values of u k  needed in (2.19) may themselves be determined from the six 
equations of motion. These may be written (Landweber 1961) as 

Fk = rnkt ik+fk  (k = 1, ..., 6), (2.20) 

with 

(2.21) 
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Here Fl, F,, F3 denote the components in the x’, y’, z’ directions of the force acting on 
the body; F4, F5, F6 denote the components about the x’, y‘, 2’ directions of the moment 
acting about G; m1 = mz = m3 is the mass of the body; and m4, m5 and m6 are the 
moments of inertia of the body about the x’, y‘ and z’ axes respectively. 

The force components Fk are due to the pressure distribution over the body. (In 
certain applications they may also include mooring forces, or be taken to account 
empirically for the effects of viscous damping.) Since the motion nonlinearities have 
been retained, the hydrostatic force components are not separated into linear stiffness 
terms in the usual way, but rather the pressure used to calculate Fk is taken to include 
the hydrostatic term. Thus the pressure p over the body is given by the unsteady - 

Bernoulli equation 
P = -prgz+d+4(V$)21, (2.22) 

where p is the fluid density. The force components Fk can be expressed by appropriate 
integrations of the pressure : 

Fk = I p d S .  (2.23) 

From the above relations the force components and consequently the velocity com- 
ponents Uk may be found, and thus the body-surface boundary condition specifying 
a$/an is established. 

The integral equation (2.15) over the surface S b  + Xf, in which G is given by (2.1 l), 
together with the boundary conditions given by (2.18) and (2.19), may now be solved 
numerically to obtain the distributions of $ and a$/& over S b  + Sf a t  time t + At. 
Time can then be advanced by one step so that the free-surface boundary conditions 
and the equations of motion can be used to establish (2.18) and (2.19) a t  the new time. 
The problem can then be solved a t  the new time, and in this way the calculations can 
be advanced over a sufficient duration to describe the evolution of the flow and the 
body motions with time. This completes an outline of the theoretical basis of the 
method used, and the numerical procedures based on it are now summarized. 

3. Numerical procedure 
The surfaces S b ,  S, and Si are discretized into finite numbers of area elements or 

facets, as indicated in figure 3. Equation (2.15) and the boundary conditions (2.18) 
and (2.19) are then made to apply a t  the corresponding facet centres of XI, and Sf. 
Thus (2.15) may be rewritten without approximation as 

I aG 
an #‘“’(5) - (Xi, 5) dX (i = 1,2,  ... N ) ,  

where xi is the point x a t  the centre of the i th facet, and ASj is the area of thejth facet. 
8 is the number of facets over 8 b  +St (made up of Nb facets over S b  and Nf facets over 
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FIGURE 3. Sketch of surfaces discretized into facets (shown with 7 = 0). 

Xf), N’ is the total number of facets and it is understood that the surfaces are treated 
in the order S b ,  Sf, S, as the indexj increases from 1 to N’.  

It is possible in principle to develop different-order approximations to the solution 
in terms of a parameter e = As/L, where As is a characteristic facet length and L is 
the incident wavelength (Isaacson 1981a). To a first such approximation, the inte- 
grands in (3.1) are taken as constant over ASi (except for singular terms when i = j), 
and (3.1) may then be written as a set of N linear equations for the 2N quantities 
#j = #(xi) and = &$/&(xi) over Sb +Xf.  Thus 

where the left-hand side of (3.1) is absorbed into the coefficients aii. The coefficients 

(3.3) 

where G, denotes G(xi, Ej) and so on. G may be obtained directly in terms of x and 5 
as indicated in (2.1 1). aG/an may be expressed in t,erms of x, 5 and n (at 5) as 

cosy cosy’ =---- 
r2 r’2 . (3.4) 

Here y and y’ are respectively the angles between n and r = 5-x and between 
n’ = n,i+n,j-nn,k and r’ = 5I-x so that 

(3.5) 
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When i = j the integrands in (3.1) are singular, and the corresponding integrals with 
q5 and a$/& taken as constants may be found analytically for any given facet shape 
in exactly the same way as is performed in linear diffraction problems. If the non- 
singular components l/r’ and a(l/r‘)/an are taken as constant over each facet as 

in which 

(3.9) 

(3.10) 

In  (3.8) the first term on the right corresponds to the left-hand side of (3.1) and the 
second term to that involving a( l/r’)/an. The integral I depends only on a particular 
facet shape as already indicated and may readily be evaluated. 

With the coefficients aij, bii and ci now known, (3.2) provides N equations for the N 
values each of #j and over &+Sf. The boundary conditions on the free 
surface and body are required to specify the location of Sf and to provide the remaining 
N relations that are needed. 

The free-surface boundary conditions are applied at the Nf facet centres on the 
free surface, arid so provide Nf values of 4,. In  applying these a t  any facet centre, an 
interpolation using the values of 7 and $ a t  neighbouring facet centres is needed to 
evaluate some terms on the right-hand sides of (2.16) and (2.17). 

The body-surface condition expresses the N b  values of ( a$ /a?~)~  in terms of u k  (at 
the advanced time t+At).  Using the equations of motion, these components may 
themselves be expressed in terms of # j  a t  the advanced time t + At, together with the 
available solution a t  times t and t - At, as indicated in the following. To a consistent 
approximation in B ,  the pressure acting over any one facet may be taken as uniform 
so that the normal force AT. on the j t h  facet is simply 

AFj = -pASj[gz + 4 + &(V@)’]j. (3.11) 

All such values of AT. may be summed appropriately to obtain the total force com- 
ponents Fk: 

(3.12) 

where (nk)j  is the value of nk a t  the j t h  facet centre. Substituting (3.11) and (3.12) 
into the equations of motion (2.20), we have 
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The components ( u ~ ) ~ + ~ ~  a t  the advanced time t + At can be obtained from this equation 
by a suitable time-differencing procedure. However, the numerical differentiation 
needed to determine qij on the right-hand side may lead to unstable behaviour, and 
may be circumvented by rewriting (3.13) as 

The advantage of using this form is that the left-hand side can be integrated 
directly with respect to time, and the term involving d[(n& A8i]/dt is absent in the 
linear case and should generally be small compared to that based on retaining 4 itself 
on the right-hand side. The same time-differencing equation used previously now 
gives 

(3.15) 

where 

(3.16) 

Nb d 
hk = P c A8j [P + *(V$)'Ij - $j 8 [ (nk)j  WI) +fk 

j = 1  

We are now in a position to revert to the solution of (3.2). Taking into account 
(2.19) and (3.15) above, (3.2) together with the boundary conditions on the free 
surface and the body surface may be expressed in a compact form in terms of unknowns 
$j which contain all the unknown values of $j (over 8 b )  and (over Sf) at  the 
advanced time t + At. Thus 

N 

j= l  
c Ai j  $j = hi (i = 1,2,  . . . , N ) ,  (3.17) 

(3.18 b )  

(3.19a) 

N b  Hk hi = ci- C aii&- 2 bij C (nJi- . 
N 

i = N b + l  j = 1  k = l  mk 
(3.20) 

The solution to this matrix equation may be readily obtained. 
In  carrying out this procedure for successive time steps, the various quantities of 

direct interest can be retrieved as required. I n  particular the forces on the body may 
be obtained from (3.11) and (3.12), and the velocity components uk may be obtained 
from (3.15). The body motions defined by the co-ordinates Ck are also required and 
can now be obtained by solving first (2.1) and then (2.2). 
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FIGURE 4. Sketch of discretized surfaces for the vertical-plane case. 
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By modifying (3.13) to (3.20) as needed, it is relatively straightforward to treat 
related problems in which the body motions may be prescribed as in forced-motion 
problems, or restricted, for example, to heave oscillations only, to the case of a moored 
body, or to the special case of a fixed body. 

The whole procedure can now be carried out so that the development of the flow, 
the forces and the motions of the body may be obtained. The procedure is started 
a t  a time when the incident wave velocity a t  the body surface is zero so that the 
initial conditions are known, with Sf then corresponding to the incident wave profile. 

In applying the method, it is noted that the facet locations and orientations must 
be adjusted a t  each time step, and this involves co-ordinate transformations between 
the Oxyz and Gx'y'z' systems. Furthermore; when the free-surface facets undergo a 
horizontal shift over a time step the form of the boundary conditions used must account 
for the changes to facet-centre location. For example, the corresponding modification 
to (2.16) would be based on the approximation 

where s denotes the location a t  which 7 is taken and itself depends on time. Similar 
corrections need to be taken into account also in the other relationships involving 
segment locations a t  different instants, as in (2.17). 

4. Vertical-plane problems 
A simplification to the method described here may readily be adopted to treat 

corresponding two-dimensional problems in the vertical (2, x)-plane. For the fixed- 
body case, this problem has also been treated by Vinje & Brevig (1981) using a different 
method. The body now possesses three degrees of freedom: u2 = u4 = u6 = 0. I n  
adapting the method used here, the surface-integral equation deriving from Green's 
theorem (2.10) reduces to a line-integral equation in which the influence of the 
co-ordinate y is absent, the factor 1/2n is replaced by - l/n (e.g. Kellogg 19291, and 
also the Green function is now logarithmic: 

G = lnr+lnr ' .  (4.1) 

The integral is separated as before into one over Xc, which is known, and one over 
Xt, + &. The boundary conditions to this integral equation over S b  + ~'3f are given by 
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(2.18) and (2.19) as before. The contour S is now divided into a number of short 
straight segments as sketched in figure 4, and the integral equation together with its 
boundary conditions are made to apply a t  the centre of each segment on S,+S,. 
This gives rise to a set of linear equations for $j and as in (3.2). However, in 
the vertical-plane case now being considered the coefficients ci, aij and bij are different 
on account of the different integral equation and Green function that are now applic- 
able. These are now given as 

ASi cosy’ 
Uii = 1 - -- 

27r(Zi +a) ’ 
ASi 

b. .  = - [In Ad, + In ( x i  + d )  - 11. 
7T ca 

aGlan is now calculated from the formula 

aG cosy cosy’ 
+T, - =- 

an T r 

(4.5) 

(4.7) 

and y and y’ are given as before by (3.5). The integral analogous to I in (3.10) is now 
unique and has been evaluated and substituted into (4.6) above. 

The set of linear equations corresponding to (3.17)-(3.20) can now be set up and 
solved in the same way as before. Once the values of dj and a t  the.facet 
centres are known, the wave loads and motions can be calculated by the use of (3.11)) 
(3.12) and (3.15). A considerable simplification in setting up the procedure arises in 
the calculation of n, and (V$)2 by interpolating from 7- and $-values a t  neighbouring 
segment centres. 

5. Discussion 
Various aspects of the numerical procedure described here have been considered 

by Isaacson (1981 a )  in the context of the fixed-body case. These include a suitable 
discretization of the free surface, and assessments of possible numerical instabilities 
and of the accuracy and computational efficiency of the method. Brief mention is 
made here of the stability and accuracy of the method and of the incident wave 
representation used. 

5.1. Stability and accuracy 

In  analogy with other problems that incorporate time-stepping, the usual condition 
that is necessary for stability (which may, however, be insufficient) requires that 
At/T is sufficiently small compared with e( = As/L) ,  where T and L are the incident 
wave period and wavelength respectively. However, even with reasonably small 
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values of At stability may be difficult to achieve for very steep waves, although it 
may then be possible to suppress any unstable behaviour by a smoothing procedure 
(see e.g. Longuet-Higgins & Cokelet 1976). 

Quite apart from the question of stability, the accuracy of the solution must also 
be assessed. Errors may be associated with the time increment At or spatial increment 
As. However, errors directly associated with a wave-height perturbation parameter, 
such as in solutions based on Stokes or cnoidal wave expansions, are avoided in the 
present case except through the incident wave representation adopted. 

Truncation errors involving the interval At may be reduced in a reasonably straight- 
forward way by employing a higher-order time-stepping scheme (see e.g. Longuet- 
Higgins & Cokelet 1976). The approximation in which $ and a$/& are taken to be 
constant over each facet, and their values a t  neighbouring facet centres are used to 
calculate spatial gradients, represents a first approximation in the parameter e = As/L 
(Isaacson 1981a), and is equivalent to one generally made in linear diffraction 
programs. 

5.2.  Incident wave representation 

One difficulty in applying the present method concerns a suitable representation of 
the incident waves such that there is initially no flow immediately adjacent to the 
body. The special case of a solitary wave fulfils this requirement, but is of restricted 
application. More generally, an incident-wave flow with still water ahead of the waves 
is unsteady, and should be treated formally by a time-stepping procedure, such as 
that indicated by Fenton & Rienecker (1980). However, the difficulty is overcome 
here by a heuristic approach in which the permanent-wave profile is modified to 
provide a smooth transition from still water ahead of the wavetrain to the fully 
established wave flow. This procedure is not rigorous, but can be justified for shallow 
water and intermediate depth conditions by analogy with the hyperbolic-wave 
approximation to cnoidal-wave theory. In this approximation, the flow associated 
with any one wave of a periodic train is represented by a non-periodic decaying 
function, so that the flow of the wave can be taken effectively to evolve from still 
water. This is equivalent to the matched solitary-wave approximation utilized by 
Stiassnie & Peregrine (1980). It is noted that the initial condition employed here 
differs from the one that has been used by other authors to examine breaking-wave 
behaviour, in which the flow is taken to start from a large-amplitude sinusoidal 
motion (see e.g. Longuet-Higgins & Cokelet 1976; Srokosz 1981). 

6. Results 
A computer program based on the method described here has been used to provide 

preliminary comparisons with available solutions for the cases of both linear- and 
solitary-wave diffraction around a fixed surface-piercing vertical circular cylinder 
(Isaacson 1981 a) .  A comparison with the solitary-wave solution is particularly 
relevant here because it provides an independent means of testing the numerical 
method under nonlinear conditions (even though a small-wave-height assumption is 
used, with terms of order ( H / d ) 2  omitted), and also it directly satisfies the initial 
condition of no flow adjacent to the body. A first approximation for the solitary wave 
case has been given in closed form by Isaacson ( 1 9 8 1 ~ ~  1982b) and is essentially an 
ext,ension to the cnoidal-wave case given previously (Isaacson 1977). 
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FIGURE 5. Wave-force variation for a solitary wave propagating past a fixed vertical circular 
cylinder with d/u  = 0.5 and H l d  = 0.1. - - -, closed-form solution (Isaacson 1981a, 19823). 
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FIGURE 6. Horizontal wave-force variation for a fixed truncated circular cylinder a t  the free 
surface, with d / u  = 1.5, h/u = 0.5 and d / g T 2  = 0.0186. ---, H i d  = a; - , H l d  = +; 
. . . , linear diffraction solution. 

A comparison is presented here for the particular conditions d /a  = 0.5 and H/d = 0.1, 
where a is the cylinder radius and H the wave height. The computation was carried 
out using 100 time steps covering a duration corresponding to  (gH)tt /d = 5-0. This 
spans the important force variation for the case treated. The cylinder surface was 
discretized into 48 facets, and the free surface into 180 facets. Figure 5 shows the 
horizontal force variation with time calculated by the present method, together with 
that obtained from the closed-form solution indicated by the broken line. Also 
included for reference is the incident wave elevation at  x = 0. The force variations 
predicted by both methods are seen t,o agree reasonably well. For the case treated, 
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FIGURE 7. Heave variation for conditions corresponding to those of figure 6, except that  the 
cylinder is freely floating with za/h = - t initially and m,p/pa5 = 0.47. 

the maximum force predicted is within 5 %  of that predicted by the closed-form 
solution. 

As a more general illustration of the method, results are presented for a truncated 
vertical circular cylinder a t  the free surface (a circular dock). The cases treated 
correspond to d /u  = 1.5u, h/u = O.Bu, dlgT2 = 0.0186 and H l d  = and + in turn, 
where h is the cylinder draft and T is the wave period. These waves are reasonably 
shallow with d/L  N 0.15. 

The results are shown in figures 6 and 7. The incident-wave profile for both waves, 
together with the corresponding linear-wave prediction for permanent waves, are 
included in figure 6 for reference purposes. The horizontal force for the two cases, 
together with the corresponding predictions of linear wave theory (Garrett 1971) are 
shown as functions of time in figure 6 for the case when the cylinder is held fixed. The 
present method predicts the maximum horizontal force coefficients to be FlpgHu2 = 

0.75 and 0-83 for the two cases, and to occur somewhat closer to  an incident wave 
crest than predicted by linear theory. These maximum force coefficients are respec- 
tively about 20 and 32 yo greater than the linear-theory predictions, and on the basis 
of inertia-force considerations, are not unexpected. 

When the cylinder is freely floating with its centre of mass zG initially a t  x = - ah 
and with a radius of gyration in pitch of 0 . 5 5 ~  (i.e. m,/pa5 = 0.47), the heave motions 
as a function of time are shown in figure 7.  (The linear theory predictions for this 
floating-cylinder case are based on an axisymmetric source distribution program 
(Isaacson 1982 a).) Once more the apparent differences from linear-theory predictions 
may be anticipated on the basis of inertia-force behaviour. 

7. Conclusions 
A numerical method has been developed for the computation of nonlinear ocean- 

wave interactions with large fixed or floating structures of arbitrary shape. The 
method involves the application of Green’s theorem, and a time-stepping procedure 
is used to obtain the development of the flow. The method may be simplified t o  treat 
corresponding two-dimensional problems in the vertical plane. 

Comparisons have been made with known results for the particular cases of small- 
amplitude sinusoidal- and solitary-wave diffraction around a fixed vertical circular 
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cylinder, and these are quite favourable. Results are presented for the more general 
case of a truncated vertical circular cylinder which may be fixed or freely floating, 
and these exhibit significant differences from linear-theory predictions. 
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